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Spectral Domain Analysis of Single
and Coupled Microstrip Open
Discontinuities with Anisotropic Substrates

Jaideva C. Goswami, Andrew K. Chan, and Charles K. Chui

Abstract— The normalized input admittance for single and coupled
microstrip open discontinuities with anisotropic substrates are obtained
using a full-wave analysis. Problem is formulated in terms of the field
Green’s function in the spectral domain. Numerical results are found to be
in good agreement with the published theoretical and experimental results
for microstrip open discontinuities with anisotropic/isotropic substrates.

I. INTRODUCTION

Extensive research related to discontinuities in planar transmission
lines with isotropic substrates has been carried out. However, results
for the propagation characteristics and discontinuity effects of trans-
mission lines with anisotropic substrates are scant. In fact, there seems
to be only one paper [1] that deals with microstrip open discontinuity
on anisotropic substrates. In [1], a dynamic source reversal method
based on potential theory has been used to compute open circuit
capacitance. The microstrip is enclosed in a waveguide of infinite
extent, operating in its cut-off mode.

The objective of this paper is to analyze the end effects of single
and coupled microstrip open discontinuities with uniaxial substrates
using spectral domain method. The analysis presented in the paper
can be reduced to the isotropic case with some trivial modifications.
Furthermore, it can be extended to slot line and CPW line by using
appropriate Green’s function. The paper is organized as follows.
In the next section we discuss the formulation of the problem for
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(a) Open coupled-microstrip and (b) the equivalent problem.

Fig. 1.

coupled microstrip line which can be easily modified for single line.
There are a couple of papers that deal with the Green’s function in
uniaxial medium. We avoid repeating the derivation by giving proper
reference. The real-axis integration method is used to evaluate various
integrals involved in the formulation. For this purpose, we provide
the expressions for the asymptotic form, poles and residues of the
Green’s function in Sections II and III. In Section IV, we discuss the
numerical results and compare them with the published ones. Finally,
we conclude our work in Section V.

II. FORMULATION

Transmission line configuration to be studied is shown in Fig. 1(a).
We assume that the metal thickness is zero and that the substrate is
lossless. Observe that the configuration shown in Fig. 1(a) reduces to
that of a single microstrip line for p = 0.

We will use field integral equations in spectral domain for the
purpose of analysis. Although we provide results for dielectric
anisotropy only, let us, for a general case, consider that the substrate
is characterized by both the relative permittivity and permeability
tensors, given as

€= Lel + ZZe., u= L’“ + 2z, €8]

where L is the identity dyadic, transverse to the optic axis z. Let the
electric and magnetic anisotropy ratios »° and v" be defined as
€
pe=t = B (2)
€z Mz

For the medium characterized by (1), the time-harmonic form of the
Maxwell’s equation becomes

—VXE=jupp-H+M 3)
V X H = jwee - E+J. (€]
The dyadic electric field Green’s function GZ7(r, r') can be obtained

from (3) and (4) in terms of the transmission line Green’s function
[2, Ch. 2]. A detail description of such formulation is given in [3].
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In the present analysis, first, we replace the strip regions by A. Longitudinal Variation of Current

equivalent surface electric current (see Fig. 1(b)), namely

J.(x)=2xH(r); reD:=DtuD"” &)
where DT := {x,y.z | * € (5,5 +2d),y € (—0c0,0],z = 0} and
D™= {x,y,2 | € (—s,—5 — 2d),y € (—o0,0], z = 0} and then
obtain the electric field integral equation by enforcing the boundary
condition

zxE(x)=0;, reD. ©)
At this stage, we assume that the strip-width is very small compared
to the operating wavelength and, consequently, only ¥ components
of the electric field and current exist. Let us assume that the surface
electric current distribution has the following functional dependence
on r and ¥y

Jh(zy) =
Joy(zy) =

f:c 'r)fy( 5y) €D+ (7)
fo(2)fy(y)i(a,y) €D, (®)

Since the strip-width is very small compared with the operating
wavelength, we take one-term approximation of the x-dependence
of the electric current. Based on the edge-condition, we represent

f (@) and f7 () as

(@) = gle —p), f (z) = 2g(x + p); 9)
1

g(z) = my (10)

(ko) = Jo(kad). (11)

In (9), plus and minus signs preceding g(z + p), apply to even and
odd modes, respectively; §(k.) represents the Fourier transform of
g(x), and, in (11), Jo is the zero order first-kind Bessel function.

By choosing a suitable testing function which has the same xz-
dependence as (9) and y-dependence as ¢ (y) for some integer k
and by applying the boundary condition (6), we have

/ / ABT (ko by foy (By )i ( =y )dkodhy =0 (12)
where

AP (ko ky) = Gy (e, by V3 (R d){“’s (,j;’;} (13)

with cos? (k,p) and sin®(k,p) for even and odd modes, respectively.
In order to find the propagation constant, ky., of the infinite transmis-
sion line, we assume that all the field and current distributions have
their y-dependence as e IkveY Tt is easy, for this case, to arrive at

/ AZY (b, bye)dks = 0. (14)

Explicit expression for G'yElj is given in [4]. To accelerate the
convergence of the numerical integration, we need the asymptotic
form of A®’ as given below

kiiinoo A (ko ky) =2 AL (o y)
= 7o K2 T
ThodkZ | Y14+p.  C1+pa

2
x [1+ sin(2kzd)]{2?2gélljl£)) } (15)

where p. = Jer€, and pr, = Jlrfi-.

Since the transverse dimensions of strips are very small com-
pared with the wavelength, we assume that the current distribution,
sufficiently away from the discontinuity, is due to the fundamental
mode only. Near the discontinuity, in addition to the entire domain
basis functions representing the fundamental mode, subdomain basis
functions are used to expand the unknown current to account for the
deviation caused by the presence of higher order modes generated by
the discontinuity. For subdomain basis functions, we use piecewise
sinusoids (PWS). With these, the longitudinal variation of current is
given as

K
—Tsr(y)+ Y cxdi(y),

k=0

foly) = s:(y) K>0. (16

The entire domain functions s, and s, representing incident and
reflected waves, respectively, are given below [5]

s.(y) == COS(kyey)U(—y - %
ol )
x [kzk 2 18k, — hye) = 6k, +kye)]] (18)

sr(y) 1= cos(ky.y)U (—

ir(ky) = {exp(
kye
X k'Q

where k. is the propagation constant for the fundamental mode and
U(y) is the Heaviside function, defined in a usual way as

=3 128

) — Jsin(kyey)U(-y), (A7)

W)'F]Sm(kyey)[]( -y). (19)

™) 4
I3, ) Y

T bk, — kye) - 6<ky+kye>1] 0)

< 0. @b

The subdomain basis function ¢j, for piecewise sinusoid case is

r(y) =Ny +7(k+1)) (22)
Sin(kye("*lyl)) ] l < T
= sin(kyeT) nw=rm,
) {0 i elsewhere; 23)
N oy 2k, e cos(kyeT) — cos(kyT)
— a7 (k+1)ky Y Y y 24
Gulhy)=ec k2 — k2, sin(kyer) 4

With0<7<ﬁy—

III. SURFACE-WAVE POLES

In this section we are concerned with the evaluation of surface-
wave poles that must be taken into account while integrating along
the real-axis in the complex k. -plane. We will use graphical methods
[6], [7] to obtain these poles. In the k,-plane (k2 = k2 + kJ),
surface-wave poles lie in [ki,k2] where k1 = ko and ky =
max{ko/pies, koy/iz€}. The following parameters, with their
usual meaning, will be required in our subsequent discussion

_ 2 2 > D 1.2
1P = ki — vrk2 . k2 v k2 25)
]\/VPkQ—kt, ki < vPk;
ke = ko/peee; ko = wy/Ho€o (26)
e =novpe/es;  mo = v po/€o @27

where p = e, h imply TM and TE cases, respectively.
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Fig. 2. Comparison of results for phase of the scattering parameter Sy, of
open microstrip line with alumina (e; = €. = 9 9) substrate
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Fig. 3. Comparison of results for normalized input susceptance of open
microstrip line with sapphire substrate.

A. TE Surface-Wave Poles

For TE case, surface-wave poles are obtained by solving the
transcendental equation

a

kRN
kOph 'n 1- <}“0~’”Zh )
~ + arctan h
22

kR = (n— 1w+

(28)

ro| =

where r, = Jpre — v and n = 1.2,.... First we find roots of
(28) in the k.»-plane and then map these poles to the %, -plane using
(25). On the k.»-plane the nth root of (28) lies in [Ly. U], where

2nmkory

L, = 2ttvoth
T Y 2hkors

Un = min { % korn b n = 1.2.....

(29)
Total number (N3) of TE—surface-wave poles. for a given substrate
thickness, is

- 1 Zhl‘h
]\/ = b
h [2 + . J (30)

where || is the largest integer that is smaller than or equal to .r.
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Fig 4. Results for normalized input susceptance (b, ) and conductance (¢in )
of open microstrip line with sapphire substrate.

Expression for residue R¥7* of GE/ at a pole p, on the k. -plane
vy p P
is given below
R (RE)P
REVR (L)) = penako X vk (K)”
k2
1
pekgri + v hkl [(1‘?2)~ - l’f(kz)_]
3

X

where kf‘l. kfg. and k, are evaluated at k., = p.. Observe that since
at a pole k%) is imaginary and k%, is real, the residues are purely
imaginary.

B. TM Surfuce-Wave Poles

For TM case, the transcendental equation takes the form

ke, \2
]s»upel'( 1 — (koz;c)

L)

kish = (n — 1)x + arctan (32)

where r. = \/jize, — v and n = 1.2,.. As done for the case with

TE surface-wave pole, first we find roots of (32) in the k-2-plane and

then map these poles to the k. -plane using (25). On the k-»-plane
the nth root of (32) lies in [L..U.|, where

= %. U. = min{nhl.kgrg}:

(33)

Total number (N, ) of TM—surface-wave poles, for a given substrate

thickness, is
2hre
N.= |1 .

(34)

Expression for residue RZ 7 of nyj at a pole p, on the k.-plane
are given below
e V3 e V2
RE]‘e(k ) = €10 « (kzl) (k;z)
z y /»’_o ‘pzk’g
1

x 2 ‘-7 2
ehgre + juehkey [(ksy)” — pi(ksy)"]

(35)

where k%, k%,, and k, are evaluated at k, = p,.
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Fig. 5. Results for normalized input susceptance and conductance of open
coupled-microstrip line (even mode) with sapphire substrate.

It is worth mentioning. here that for isotropic substrates in which
ve = vp = 1, p. = pp, and re = rp, TM and TE surface-wave
poles alternate beginning with TMy. However, such a pattern may
not exist for uniaxial substrates.

IV. NUMERICAL RESULTS

Application of Petrov-Galerkin method with the basis functions
described before leads to a set of linear equations, solution of which
gives the desired value of the reflection coefficient I'. The matrix
structure is shown below

n) Wpl] ] | =121

where the matrix elements take the form as

Ap,l

4k,
- / / AEJ kz ’ )
sin( E7')

[cos(kyeT) — cos(kyT)] {cos (Tp —

(36)

—)k + j cos(Tpky )]

X 2
(=)
x dkydky, 37
Ap~q
8k2,
= / / AZ7 (ks k)
sin (kyeT)
y [cos(kyeT) — cos(kyT)]” cos[(p — ¢ + 1)7k,]
2
(k3 — k)
x dk,dk,, (38)
By = A1, (39
with p = 1,...,. M +2, ¢ = 2....,M 4+ 2, and A, 1, denoting
complex conjugate of A, ;. It is easy to verify that
,AP"I = Aq__lyp+1; p=1...,.M+1, 40)
Apg=A4p-19-1; P=2,....M+2:9=3,...,M+2 (41)

indicating the symmetry and Toeplitz nature of the major portion of
the matrix.

Integration over k, is common to all the matrix elements, therefore,
they need to be computed only once. Usually, this integration
consumes most of the CPU time during the numerical evaluation. We
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Fig. 6. Results for normalized input susceptance and conductance of open
coupled-microstrip line (odd mode) with sapphire substrate.

use the real-axis integration [8] for the purpose of evaluating integrals
of the matrix elements. We perform the integration by replacing A%’
with A7 Af:njg AL’ and then adding the integrals of the singular
part, Asmg, and the asymptotic part, AZ . Singularity subtraction
smoothes the integrand while asymptotic subtractlon accelerates the
convergence. The discontinuity in the derivative at the branch point
can be taken care of by trigonometric/hyperbolic transformation.
All the numerical results have been obtained using SPARC Server
1000 machine. As the first step toward validating our results, we
have computed the the effective dielectric constant for different
transmission line configurations and found excellent agreement with
the published results. It takes less than 1 second to evaluate ky. for
one frequency. In Fig. 2, the phase of the scattering parameter Sy, of a
microstrip open discontinuity with alumina substrate, calculated using
the present analysis, is compared with the experimental result [9].
Once again, we get very good agreement. For microstrip discontinuity
with sapphire substrate, our results, as shown in Fig. 3, match fairly
well with those in [1]' for lower frequencies. At 6 GHz, however,
results deviate quite significantly. This may be attributed to the fact
that the results in [1] were obtained by placing the microstrip inside a
rectangular waveguide which was supposed to be at cut-off. At higher
frequencies the effect of the rectangular waveguide would become
significant. Normalized susceptance (b.n) and conductance (gin)
for single and coupled microstrip transmission lines with sapphire
substrate are shown in Figs. 4-6. For Figs. 4-6, 39 PWS function
with 7 = 0.018 75X, were used. Computation time changes with
h/Xg. A typical CPU time for h/Ao = 0.05 is about 5 minutes.

V. CONCLUSION

In this paper we have analyzed open discontinuities in microstrip
and coupled microstrip lines with uniaxial substrates. The analysis is
quite general and can be used for isotropic case by simply setting
Ut = p=, and €; = ¢,. The analysis can also be extended to slot line
and CPW line by replacing G 5 by GH M and making some simple
changes in the formulation.
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Development of Accurate On-Wafer,
Cryogenic Characterization Techniques

J. Laskar, J. J. Bautista, M. Nishimoto, M. Hamai, and R. Lai

Abstract— Significant advances in the development of high electron
mobility field-effect transistors (HEMT’s) have resulted in cryogenic, low-
noise amplifiers (LNA’s) whose noise temperatures are within an order
of magnitude of the quantum noise limit (h1//k). Further advances in
HEMT technology at cryogenic temperatures may eventually lead to
the replacement of maser and superconducting-insulator-superconducting
(SIS) front-ends in the 1-100 GHz frequency band. Key to identification
of the best HEMT’s and optimization of cryogenic LNA’s is accurate and
repeatable device measurements at cryogenic temperatures. A cryogenic
on-wafer noise and scattering parameter measurement system has been
developed to provide a syst
ematic investigation of HEMT noise characteristics. In addition. an
improved parameter extraction technique has been developed to help
understand the relationship between device structure and LNA perfor-
mance.

I. INTRODUCTION

As the demands for high performance satellite transmit/receive
components increase. researchers have looked for viable alternatives
to increase signal to noise margins at higher frequencies. Notable
results have included the development of cryogenic low-noise am-
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plifiers at X- and Ka-bands [1]. [2] and the development of hybrid
high temperature superconductor and semiconductor components [3).
The improvement of high performance satellite links and the need
for high performance light satellites has provided the impetus for
continued development and understanding of cryogenic microwave
components. A critical element 1n the application of this technology
is the development of a robust on-wafer characterization techmique
at cryogenic temperatures.

In recent years, significant progress has been made in the devel-
opment of cryogenic, on-wafer probing systems [4]-[10]. The major
shortcoming of previous efforts has been the lack of a repeatable
and accurate system yielding results comparable to room temperature
systems.

In this paper. we report a quantitative investigation in the accuracy
of on-wafer cryogenic noise and S-parameter measurements. Results
shown in this paper include:

1) demonstration of two-tier cryogenic calibrations;

2) study of the effect of temperature on calibration repeatability;

3) development of improved parameter extraction techniques for
cryogenic temperatures;

4) investigation of room temperature noise techniques applied at
cryogenic temperatures:

5) initial results of an on-chip cryogenic noise technique.

II. CRYOGENIC-PROBE MEASUREMENT SYSTEM

A variety of test fixtures have been used [4]-[9] to evaluate HEMT
performance from 300 K to 15 K. Most of these fixtures are similar
to the one developed by Liechti and Larrick [10], a microwave test
fixture that could be immersed in liquid nitrogen. To date, it has been
difficult to make broad band scattering (S)-parameter measurements
in such an environment due to the limited accuracy of the full two-port
calibrations.

The cryogenic microwave system in this work uses coplanar
waveguide probes in a vacuum station coupled to a vector network
analyzer for scattering parameter measurements, and a noise and test
set with a noise system for microwave noise parameter measurements.
The microwave measurement system currently under development
incorporates measurement tools originally developed for the first
system in 1989 [11]. [12]. The cryogenic probe measurement system
contains ports for RF cables, thermometers, vacuum pumps, dry
nitrogen backfill lines, coplanar probes with manipulators, and a
closed-cycle refrigerator cold bead. The probe body rests on a copper
block attached to a fiberglass post. The fiberglass reduces the thermal
load and copper braiding from the cold head thermally anchors the
probe to the 12 K cold station assuring sample temperatures of
12-20 K. The mechanical and thermal stability of the wafer stage is
established by supporting it on fiberglass posts above the cold head
and thermally anchoring it to the cold station with flexible copper
braids.

The most important feature of this design is the incorporation of a
closed-cycle helium refrigeration syster. The first successful designs
of on-wafer cryogenic systems used open-cycle cooling to reduce
start up costs and avoid mechanical vibrations. However, for long
term temperature stability, a closed-cycle helium source provides the
optimum solution. Decoupling and damping of the vibrations from
the cold head to the probe station is accomplished with a bellows
and vibration mount. This system allows small-signal microwave
measurements from DC to 40 GHz over a physical temperature range
of 16-300 K. Since the microwave hardware is insulated by vacuum
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